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ABSTRACT

Complex well developed and established Anonymity systems lack Accountability. These

systems offer unconditional anonymity to their users which can stimulate abusive behavior.

Controlling abuse should be equally important as protecting the anonymity of legitimate users

when designing anonymous applications. Current anonymity systems are promoted to family

and friends, businesses, activists and the media. However, these same systems could potentially

be used for: sending offensive email, spam, copyrighted material, cyber warfare, child pornogra-

phy, pedophiles chatting with kids online or any other illegal activity performed on the Internet.

Freedom of speech and the First Amendment allows people to express their opinions and choose

any anonymity service and by no means will people be forced to use this system. In this thesis,

a model that allows an anonymous yet accountable method of communication on the Internet is

introduced. The design and implementation is based on a new proxy-re-encryption scheme and

a modified onion routing scheme. Techniques for Accountable Anonymity are demonstrated by

building a lightweight prototype. In this system, users are registered in the system’s database

in order to use it. In this research, the total network latency is significantly smaller when

sending data over the network compared to The onion router (Tor) system which makes it

deployable to use at a larger scale system. Also, the Accountable Anonymity system’s digital

forensic mode makes it easier to track the perpetrators.
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CHAPTER 1. INTRODUCTION

Highly sophisticated hackers can rent Amazon.com Inc’s servers for as low as three pennies

an hour to execute cyber attacks and use the Tor anonymous system to hide their tracks in

the layers of proxy servers that are spread all over the world. The most recent case is Sony

Corp’s PlayStation Network that became the second-largest online data breach in U.S. history.

This attack compromised more than 100 million customer accounts and is the the largest data

breach in the U.S. since 2009. The first-largest data breach was when hackers stole credit and

debit card numbers from the Heartland Payment Systems [15].

“Anyone can go get an Amazon account and use it anonymously”

said Pete Malcolm, chief executive officer of Abiquo Inc. [15]. Recently, the defense industry has

been a target of cyber attacks. Lockheed Martin, the largest U.S. defense contractor, Northrop

Grumman, the second largest defense contractor, and L3 Communications are the most recent

reports of cyberattacks; it appears that it all started when RSA Security was breached earlier

this year. RSA Security admitted March 17th that cybercriminals had breached its network

and obtained information relating to the SecureID technology. The SecureID lets remote users

log in to the company with a cryptographic key secure token. The company has refused to

publicly discuss exactly what was stolen or when the breach actually occurred, but anonymous

sources say that clone SecureID tokens were used. The mentioned defense companies as well

as other defense, industry, and healthcare customers use the RSA SecureID tokens. Mitigation

plans for these defense contractor companies so far is to shut down their remote access and

a companywide password reset. The Pentagon has announced that international computer

intrusions are to be considered acts of war against the United States and will be answered with

conventional military force [8].
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A few years back, hackers were much easier to track since they launched their attacks from their

parent’s basement or back bedroom, but now with cloud computing and anonymous systems

such as Tor, it is extremely hard to trace. These are the kind of problems that researchers are

trying to solve; these are real world situations that affect millions of innocent people and leave

the FBI, Law Enforcement Agencies and big corporations scratching their heads.

Malicious or criminal cyberattacks in the U.S. are escalating rapidly. According to a March

report by the Ponemon Institute, they made up 31 percent of data breaches in 2010. These

cyberattacks are up from 24 percent last year. Each event costs U.S. businesses an average of

$ 7.2 million dollars. This study also found that about 85 percent of all U.S. companies have

experienced one or more attacks [27]. This report coincides with a similar report conducted by

the U.S Government Accountability Office (GAO). This government entity ensures that the U.S

government spends the taxpayers money effectively. The study was formed by a compilation

of existing reports, surveys and interviews with public and private officials. It identified the

major government organizations that deal with cybercrime.

These organizations include: The Department of Justice (DOJ), The Department of Homeland

Security (DHS), The Department of Defense (DOD) and the Federal Trade Commission (FTC).

The estimated annual loss due to computer crime is $ 67.2 billion dollars for U.S. organizations

according to the Federal Bureau of Investigations (FBI) [11]. Figure 1.1 illustrates a comparison

between Traditional criminal techniques and Cybercrime.1

Now, to highlight the importance of Accountability in cyberspace, here are three recent

good cases on cybercrime that serve as good examples of what happens when people loose all

accountability on their actions. These are felony or criminal cases that will permanently taint

an individual’s record making it difficult for an him/her to get the simplest job possible. Please

visit the Department of Justice website for more information on any particular case [7].

• Manhattan U.S. Attorney charges college student with creating and dissemi-

nating counterfeit online coupons over the Internet. On May 11, 2011, The U.S.

Attorney for the southern District of New York and the FBI charged Lucas Townsend

Henderson with wire fraud and trafficking in counterfeit online coupons. Henderson cre-

1Source: GAO
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Figure 1.1 Comparison between Traditional Criminal Techniques and Cybercrime

ated these coupons between July 2010 and March 2011. Retailers and manufacturers lost

thousands of dollars by paying out the coupons as a result of Henderson’s behavior. Hen-

derson posted these coupons on two message boards exclusive to the discussion of online

coupons using the nicknames “Anonymous 123”, “Anonymous234” and “Anonymous345”

Henderson also wrote tutorials on how to create these online counterfeit coupons so others

can create these coupons using their own computers. Henderson is 22 years old and lives

in Lubbock Texas, he was charged with one count of wire fraud, which carries a maximum

sentence of 20 years in prison, and one count of trafficking in counterfeit goods, which

carries a maximum sentence of 10 years in prison. Henderson assumed responsibility for
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his actions and surrender himself to the New York authorities.

• Hacker pleads guilty to identity theft and credit card fraud resulting in losses

of more than 36 million. On Thursday April 21, 2011 Rogelio Hackett Jr. 26 of

Lithonia Ga. pleaded guilty before U.S. District Judge Anthony Trenga in Alexandria

Va. to trafficking in counterfeit credit cards and aggravated identity theft. U.S. secret

agents searched Hackett’s home armed with a search warrant and found 675,000 stolen

credit card numbers and related information in his computers and email accounts. Hackett

admitted in court that he has been doing this since 2002 either by hacking into business

computer networks and downloading credit card databases, or purchasing information on

the Internet using card forums which are online discussion groups used by “carders” to

traffic credit card and personal information.

• Five domestic defendants linked to international computer hacking ring guilty

of federal fraud charges which led to 46 people charged in Operation “Phish

Phry” have now been convicted. March 25, 2011, five people were convicted of

federal charges for being involved in an international “phishing” operation that used

spam emails and bogus websites to collect personal information that was used to defraud

American banks. A multinational investigation conducted in the U.S. and Egypt that led

to the charges against 100 individuals, the largest number of defendants ever charged in a

cybercrime case and 46 of them have been convicted in a federal court in Los Angeles as a

result of Operation “Phish Phry”. Operation “Phish Phry” revealed how Egyptian-based

hackers obtained bank account numbers and related personal identification information

from an unknown number of bank customers through phishing - a technique that involves

sending e-mail messages that appear to be official correspondence from banks or credit

card vendors. Bank customers who received the spam emails were directed to fake websites

claiming to be linked to financial institutions, where the customers were asked to enter

their account numbers, passwords and other personal identification information.

These are just three cases; there are many others where people are being charged for cy-

bercrimes. One thing that was noticed while reading through these cases is that most of these
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criminals are young and loose all accountability for their actions just for the thrill of hacking

and making quick money or thinking they are going to outsmart the FBI. Some theories as

to why these young cybercriminals get caught right away are because they are inexperienced,

don’t cover their tracks or just want to brag to their friends. Sophisticated hackers that have

a good computer technical background, a computer science or mathematics degree or are self

taught programmers might get away for a while but eventually get caught. We continue with

the discussion on anonymity systems.

Unfortunately, complex anonymous systems such as Tor left out accountability features

when the developers designed the software architecture. And as a consequence, it has caused

many problems and headaches for the U.S. and many other countries around the world. An ex-

ample of this is the controversial website Wikileaks [2]. In this example, sensitive data is stolen

or captured from one of the exit routers in the Tor system. This is acomplished by performing

network traffic analysis and is exposed to the world. The website is hard to shut down because

many of the hosts are onion routers that are hard to trace and the uniform resource locator

(url) is encrypted. In this research, the possibility of engineering powerful schemes that allow

accountability in such a system is explored. A lightweight and efficient prototype system that

might solve these exceptionally important issues was successfully implemented.

Here are the definitions and proposals of some important properties for the Accountable

Anonymity System (A2S) that was designed:

Anonymity is derived from the Greek word anonymia, meaning “without a name” or “name-

lessness”. Anonymity means that an individual’s personal identity is publicly unknown.

People choose not to disclose their identity and become anonymous for many reasons

[40]. For example, some good reasons are charity contributions, crime witnesses, support

groups. Some bad reasons are to commit cybercrimes and traditional crimes such as

bank robberies although, some criminals are not careful enough and don’t cover their

faces when committing such crimes. Anonymity can be used for good or evil things.

This property is important in the A2S system because it gives its users the power to

communicate anonymously but with responsibility.
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Accountability stems from the late Latin accomplare (to account), a prefixed form of com-

putare (to calculate), which in turn derived from putare (to reckon). The word itself does

not appear in English until its use in the 13th century Norman England, the concept of

account-giving has ancient roots in record keeping activities related to governance and

money-lending systems that first developed in Ancient Israel, Babylon, Egypt, Greece

and later, Rome. Accountability is an obligation or willingness to accept responsibility

or to account for our own actions. Often used synonymously with such concepts as re-

sponsibility, and liability [39]. This property is also important in the A2S system because

if users abuse the system they will be held accountable for any offending message that is

reported. As a consequence, they will be traced and all evidence will be handed over to

a law enforcement agency.

Accountable Anonymity is the combination of both definitions given above. This concept

is introduced for the first time in conjuction with an anonymous system. The notion of

accountable anonymity is when people are free to choose not to disclose their identity, but

must also be willing to accept any and all consequences for their own actions. Account-

able Anonymity is believed to be a more rational anonymity as opposed to the absolute

anonymity, which is already provided by current well designed anonymous systems. This

property is the foundation of this research work.

Efficiency The system needs to be as efficient as possible in order to support a large number

of users. This feature is of great importance because if the system grows in popularity, it

can create bottlenecks on the network and if the system is slow many users won’t use it.

Portability The system is currently developed in C++ for Linux/Unix systems with the g++

compiler and can be easily ported to a Macintosh or Windows system if necessary.

Usability The system needs to be user friendly.

Approach and contributions In this thesis, the Accountable Anonymity System (A2S) is

presented. This system contains all the above properties and achieves anonymous com-

munications on a network of peer to peer networked computers. The onion routing
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structure of the Tor system was carefully examined and the A2S system was designed

with a special circuit-less structure and a new proxy-re-encryption scheme that achieves

multi-hop capabilities, a feature that has never been researched before with anonymity

systems in the security research community. The A2S system will be described in further

detail in the remaining chapters, as well as other related work.

Tor system’s approach Tor stands for “The onion router”. Tor is the most popular anony-

mous system available on the Internet. It is available to the general public and free to

download from the Tor website [13]. Up to now the Tor system has about 1500 - 2000

onion routers, these onion routers are run by regular users, businesses, government agen-

cies, activists and anybody that wants anonymity online around the world and that can

spare a portion of their bandwidth in order to keep the anonymous communications [30].

The software is complex and contains thousands of lines of code written in the C lan-

guage. In order to achieve anonymity with Tor, the user constructs a circuit where three

onion routers are chosen by the user. The software comes loaded with a configuration file

and a generic digital certificate that is used once the Transport Layer Security (TLS) [34]

connection is made. Once the TLS connection is complete, a hybrid symmetric crypto-

graphic operation is used to construct the onion via Diffie-Hellman protocol [36] and RSA

cryptographic algorithm. If any of these steps fail, the entire process gets repeated again

until the circuit is successfully constructed. The network latency on the TLS handshake

was measured. It takes 669 ms to complete the TLS handshake, and other computations

need to take place in order to construct the onion part before the user can successfully

send encrypted data through the wire. The initial suspicions turned out to be correct

and the findings showed that this system is slow compared with the A2S system. The

reason is simple, all onion routers are constructing the TLS connection and negotiating

the handshake, by multiplying by 2000, which is the number of onion routers currently

on the network, the time it takes for it to complete some of these operations is greatly

increased.

Threat Model A global passive adversary is the most powerful threat against any anonymity
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system and as other systems the A2S system is not immune to such strong adversary

[30]. An adversary can monitor parts of the network traffic as well as generate, modify,

delete or delay such traffic. The adversary can also operate some of the onion routers

and hack into other onion routers. But since the A2S system does not create circuits,

and the proxy-re-encryption scheme re-encrypts the ciphertext at each hop with a special

proxy-re-encryption key, the adversary will try to decrypt the ciphertext and will get a

different ciphertext instead of the original message. Only the destination will be able to

decrypt the ciphertext and get the correct message.

Attacks and Defenses The description of some of the most common attacks against any sys-

tem anonymous or not and how well this implementation can mitigate them are discussed

in detail. Some of these attacks can cripple any system that has no security mechanisms

implemented or if existing vulnerabilities exist in the system.

Passive Attacks

• Network Analysis - The network can be analyzed using a simple tool such as the ping

command and a map can be constructed on the network. This procedure is often called

footprinting. Once this map is constructed, the attacker can create a complete profile

of the network infrastructure before launching an active attack. Figure 1.2 illustrates

a passive attack where Eve monitors the communication between Alice and Bob. To

mitigate this attack we disabled ping fuctionality on our system.

• Host Traffic Analysis - The popular tool called Nmap can be used by an attacker to

get specific information of a host system, this technique is called fingerprinting and is also

a very popular for hackers because this utility too can tell wether the host system is a

Unix, Machintosh or Windows System. To mitigate this attack our Unix/Linux systems

don’t respond to NETBIOS type 137 requests.

• Eavesdropping - This is the traditional method of spying with the intent to gather

information. Email messages and instant messaging are vulnerable to eavesdropping be-

cause of their insecure design. One example is when something is bought online the email
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account used for the purchase is opened and the exact same thing that was purchased is

now being advertised on the right hand side of the screen. To mitigate this attack, the

messages are re-encrypted several times and should be extremely hard to get the original

message back without the proper key to decrypt it.

Alice

(Client)

Eve

Passive 

Eavesdropper

Bob

(Server)

Figure 1.2 Passive Attack

Active Attacks

• Man in the middle - In this type of attack, the attacker can impersonate either the

client or the server. It can also block, route and modify, insert data into the data stream

that is being transmitted between both parties. Figure 1.3 illustrates an active attack.

• Denial of Service Attacks - Since the A2S system will probably be released to the

public as a service, denial of service attacks could be launched against the system’s

network. But again, the A2S network does not create circuits or expensive cryptographic

operations such as TLS connections so there is no way the attack can affect the network

because the attacker won’t know what computer to target.

• Running Malicious Node - An attacker can turn malicious and will try to attack the
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rest of the nodes, but if detected the user’s privileges will get revoked and possibly face

criminal charges.

• Replay Attacks - Some anonymity systems are vulnerable to replay attacks. The Tor

system and the A2S system are immune to this attack. For example in the Tor system,

replaying one side of a handshake will result in a different negotiated session key, and

so the rest of the recorded session can’t be used. The A2S system does not execute a

handshaking scheme so the replay attack won’t work.

 

Alice

(Client)

David

Active Intruder

Bob

(Server)

Figure 1.3 Active Attack
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CHAPTER 2. LITERARY SURVEY

There are numerous systems that provide anonymity services. This Chapter describes the

existing work done on anonymity systems. It Begins with single proxy systems and further

elaborates on distributed systems and briefly describes various anonymous credential systems.

2.1 Single Proxy-based Anonymity Systems

In a centralized trust network, a single proxy is used to provide anonymity to its users.

The user connects to the proxy which provides a different IP address to the end user. Some

examples of this type of systems are the Penet Remailer and the Anonymizer.

2.1.1 Penet Remailer

Penet Remailer was a single proxy that provided email services only, where a user sends a

message to the service, an alias is generated for the sender and the real email address of

the user and the alias are saved in a database. The remailer strips off any identifying

information from the message and forwards it to the intended user. When the remailer

receives an answer from the intended user, then the remailer will look up the alias’s

real email and send the message to the pseudonymous user. This service was not truly

anonymous, because even though the end parties didn’t know each other, the anonymizer

knew both of them, so it suffered many attacks and it was finally shut down by its creator

in 1996 for not providing enough security and anonymity to its users, also because of

controversy issues with the Church of Scientology [12].
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2.1.2 Babel Remailer

Babel Remailer allows email users to converse electronically while remaining anonymous to

each other and other hostile parties. This system was built with the Perl programming

language and the Pretty Good Privacy (PGP) email cryptographic encryption software

and the authors called this implementation, the Babel Mix. The password needed to

access the secret key of a remailer is stored in cleartext [5]. This makes this system

vulnerable to many attacks. Babel does not contain a single line of cryptographic code

and relies entirely on PGP for crypto computations. The average time delay to send

messages on this system is about 24 hours, which makes it unacceptable for mass use.

2.1.3 Mixminion Remailer

Mixminion Remailer is a message based anonymous remailer protocol with secure single-

use reply blocks. It works in a real-world Internet environment. Ideas from this design are

in collaboration with the Mixmaster development team. Mixminion aims to defeat even

a global passive adversary, and address the end-to-end timing vulnerability. Mixmaster

is vulnerable to the blending attack, where the attacker blends his own recognizable

messages with the honest messages in the batch [10].

2.1.4 Mixmaster Remailer

Mixmaster Remailer is the most popular and widely deployed remailer. Mixmaster uses

3DES keys for each mix node in a chain between the sender and receiver; these 3DES

keys are in turn encrypted with the RSA public keys of each mix node. All Mixmaster

packets are the same length. When a message reaches a mix node, it decrypts the header,

then decrypts the body of the message, and then places the message in a ”message pool”.

Once enough messages have been placed in the pool, the node picks a random message

to forward. The software works for Linux and Windows systems and can be downloaded

from the Mixmaster website at [35].
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2.1.5 Anonymizer

Anonymizer was founded by the creator of Mixmaster anonymous remailer and it is an

anonymous proxy that connects the user to the Internet [35]. The company was bought

in 2008 by Abraxas Corporation. Anonymizer is a computer that serves as a virtual

private network or proxy to users that want to use the service. This allows the users

to browse the Internet anonymously. The first problem with the Anonymizer is that

the system knows the user’s IP address and everything the user is sending through this

server. The second problem is that the Anonymizer can add advertisements to webpages

that the user is browsing. The third problem is that an adversary can take control of

the Anonymizer, then all users loose anonymity and the adversary can take control of

the data transmission. The fourth problem is that the adversary can also shut down the

proxy [1].

2.2 Mix-net based Anonymity Systems

In order to make the systems more powerful against attacks, researchers began building

distributed networks. David Chaum pioneered the popular idea called “Mix”. It led to many

other interesting designs because it was used as a building block.

2.2.1 Chaum Mixes

A Mix is an intermediate computer between senders and recipients. It achieves anonymity

by scrambling and padding the messages with public key cryptography and sends them

through the network in a constant size. The intention of this is to protect the data from

traffic analysis.

How it works

Assume there is a Mix M with public-private keys and users A and B. M encrypts all commu-

nication to protect from traffic analysis by sending all messages in the same format and length.

User A constructs a message for delivery to user B by appending a random value R to the
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message, seals it with user’s B public key KB, appends B’s address and then seals the result

with the Mix’s public key KM .

So A sends: KM (KB(message, R), B’s address) to M. Upon receipt, M decrypts the payload

with his private key, and now he knows the destination address B.

So M sends: KB(message, R) to B. Upon receipt, B decrypts the payload with his private

key, and he can read the message.

An adversary can find the sender via two techniques: traffic analysis and man in the middle

attack. He can easily compute the following: First, he analyses the packets being transmitted

from A to M, then he can look at the packets being transmitted from M to B. Once this

is examined, the eavesdropper will grab one of the messages and concatenate B’s address.

KB(message, R) adds B’s address (KB(message, R), B’s address) encrypts with M’s public key

KM (KB(message, R), B’s address) once he computes this, he can compare the packets that

are arriving at M and find A. To overcome this, a nonce or random number is added to the

message that A sends to M and the nonce will be removed by the Mix as it reaches its final

destination. To make the transmission more secure, a series of Mixes is used where the sender

chooses a path of these Mixes and encrypts the message in an “onion format”. Figure 2.1 shows

an example of this procedure. To simplify this discussion in terms of the recipient replying to

the anonymous message, we will illustrate this with a single Mix. In order for B to reply, we

need to send A’s address, but the address needs to be encrypted: K1 (S1, A), Kx where Kx is

a public one-time session key, and S1 is a random number that is used as a key. A will send

this return address as part of the message described above. B uses the return address to form

a response to A: B sends K1 (S1, A), Kx(S0, response) to M and M transforms it and sends

to A: S1(Kx(S0, response). Note that at each hop in the chain the message is being encrypted

with some random value Si [6].

Disadvantages Chaum Mixes use computationally expensive public key cryptography which

is slow for simultaneous communication. Additionally, Mixes are vulnerable to timing

attacks, this means that the first and last mix can join forces to de-anonymize the sender.

Also, the nodes send constant fixed-length messages at regular intervals, including padded
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random data when necessary, this creates a bottleneck on the network.

 

Sender

 
 

dest, message

Mix A

Mix C

dest, message

Mix B

dest, message

Receiver

KAKBKCC,B,

KC KBC,

message

Figure 2.1 Chaum Mixes

2.2.2 Onion Routing

Onion Routing is the first generation anonymity system designed and architectured by the

U.S. Navy and the Naval Research Lab. Tor was presented in Chapter 1, which is the

second generation onion routing anonymity system that was released to the public and

now run by an independent organization. The main objective of the onion routing project

is to design, build and analyze anonymous communications systems. These systems are

capable of resisting the following: traffic analysis attacks, eavesdropping, other attacks

coming from Internet users, onion routers themselves. The main advantage is that the

systems are convenient to use in a low latency Internet based environment [25].

How it works

Using onion routing can be explained in four steps and the steps are similar to Chaum Mixes

in Figure 2.1:

1. Define the route - The sender connects to an entry onion router. This onion router

constructs a chain of onion routers to the receiver and we call this an “onion”.
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2. Construct the anonymous connection - The onion moves between the onion routers,

each onion router only knows about the previous node and the next node.

3. Move data through the connection - The entry onion router encrypts the data with

the other onion routers public keys and this is how the layers of the “onion” are formed.

At each hop each onion router decrypts one layer of the onion and sends the rest to the

next onion router. The last router contains the plaintext data which is then forwarded

to the receiver. If the receiver wants to send a response, the same process is applied in

reverse order.

4. Destroy the anonymous connection - If any of the above steps or the connection

fails for any reason, a destroy message is sent along the connection and any pertaining

information regarding the connection is wiped out.

Onion routing uses public key cryptography to establish the communication between the

onion routers and symmetric cryptography for the communication. Notice that this is different

than the Chaum Mix implementation where they used public key cryptography only.

Disadvantages in onion routing the length of the message grows as the path length grows, and

more keys are needed. The longer the path is, the more overhead it will cause. Research

done by Nathan Evans from the University of Colorado discovered another vulnerability

in the Tor system. This attack consisted of using a circular path with several onion routers

and running malicious onion routers. With this attack, Nathan was able to perform traffic

analysis and find the sender [24]. This vulnerability has been fixed in the Tor system.

Another disadvantage is that if a user enables JavaScript, Java applets or ActiveX and

is using onion routing or Tor his system is vulnerable to an attack.

2.2.3 Crowds

How it works

The anonymity system Crowds does not use public key cryptography, this system is for web

browsing privacy only and the idea is to hide the user in a crowd of other users [33]. Crowds can
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be compared to a distributed and chained Anonymizer, with encrypted links between crowd

members. The notion of degrees of Anonymity is introduced and highlighted here.

• Absolute privacy

• Beyond suspicion

• Probable innocence

• Possible innocence

• Exposed

• Provably exposed

Disadvantages The mere fact that this system possesses a property that allows a member of

a crowd to submit requests initiated by other users is ludicrous. Not only this property

opens up more abuse to existing users but data is mishandled and can be modified in

transit by malicious crowd users. The authors seem to acknowledge this but they still

decided to implement the property on their system. This system makes no effort to defend

against denial of service attacks by their own crowd members. This means that a crowd

member could accept messages from other crowd members and refuse to pass them along.

This system does not use SSL either and the published paper only mentions a stream

cipher performing the cryptographic operations but it failed to mention which one. The

stream cipher code was written in Perl 5 so it is a poor choice for the implementation

because it creates a bottleneck on the network and it shows from their statistical data.

The 5 kilobyte data packet that traversed a path length of 5 took 4508 milliseconds to

complete.

2.2.4 Tarzan

Tarzan is a peer-to-peer anonymous IP network where the anonymity is achieved with layered

encryption and multi-hop routing similar to Chaum mixes [21]. It is organized as a

decentralized peer to peer overlay. This system was developed by Michael J. Freedman
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and the legendary Robert Morris from MIT Lab for Computer Science who created the

Morris worm, one of the first computer worms unleashed on the Internet back in 1988

[42].

How it works

Tarzan uses a network address translator (NAT) to bridge between Tarzan hosts and Inter-

net hosts. Anonymity is provided to either clients or servers, without requiring that both

participate.

All participants run software that:

1. Discovers other participating nodes.

2. Intercepts packets generated by local applications that should be anonymized.

3. Manages tunnels through chains of other nodes to anonymize these packets.

4. Forwards packets to implement other nodes’ tunnels.

5. Operates a NAT to forward other participants’ packets onto the ordinary Internet.

Disadvantages Tarzan operates at the IP layer, this means that applications that use the IP

layer and need anonymity, will have to replace the IP layer for the Tarzan layer. Also

this system uses a NAT, if the NAT fails, the connections that already set up through it

will also fail. Tarzan is just a building block for anonymous systems.

2.2.5 Morphmix

Morphmix is another peer-to-peer system that uses symmetric key encryption and nested

encryption and sends data encrypted through an anonymous tunnel. This system offers

collusion detection that allows it to identify the compromised paths with high probability

before they are being used [22].

How it works This system is a mirror copy of the onion routing system and added a collusion

detection mechanism and is still a work in progress. The protocol design is incomplete.
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Disadvantages The collusion detection mechanism consists of every node to maintain an

internal table of each node selection it has received. This is a form of traffic analysis

and a malicious user can use the data to de-anonymize the other users. Based on their

statistics there is no way to determine exactly how many colluding nodes are on a network.

The use of probability does not constitute that there are a certain amount of well behaved

or colluding nodes in a determined system.

2.2.6 Freedom

Freedom is run by a for profit Canadian company called Zero Knowledge Systems. They have

deployed two major systems, one for email and another for TCP/IP. The email system is

similar to Mixmaster, and the TCP/IP system is similar to Onion Routing.

How it works The Freedom system consists of a set of Freedom server nodes that make up the

Freedom network, and the Freedom core servers that provide basic services. The network

transports encrypted IP traffic from one node to the next. Nodes on the Freedom network

are called Anonymous Internet Proxies (AIP’s). The number of nodes used in a route is

chosen by the user by setting her security level in the Freedom client [26].

Disadvantages Freedom loses its anonymity for the primary reason that it is a commercial

network operated for profit. Users must purchase the nyms used in pseudonymous com-

munications. Purchases are performed via the online Web store, through credit-card or

cash payments. A google search on this company turned out that they are no longer in

operation.

2.3 Adding Traceability to Anonymity Systems and the limitations thereof

2.3.1 Nym

Nym Is a simple way to allow pseudonymous access to Internet services via anonymity net-

works such as Tor but can still block abusive users. Nym uses blind signatures to create

a pseudonymity system that users can use. The blinded token is anonymously exchanged

for an ordinary TLS client certificate [14].
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How it works

To better understand how Nym works we highlighted the steps:

• Obtain a token in exchange for proving possession of a resource such as an IP address or

email address to the token server. This is the only step in which the client might need

to expose identifying information such as an IP address; the rest can take place via an

anonymizing network.

• Unblind the token.

• Wait a random interval sufficient to foil transaction time correlations.

• Exchange one or more tokens for a CA’s signature on an X.509 client certificate.

• Load the certificate into a web browser and use it to gain access to a TLS-based web

service.

Limitations The main drawback here is that the client-side implementation is a Javascript

application. Recall that the Tor system does not protect against Javascript attacks if

the browser is Javascript-enabled. Also, the user has to create a TLS certificate which

defeats the purpose of anonymity, after that, the user needs to wait a few hours to get

the Certificate Authority (CA) signed certificate back and install the certificate before he

can access Nym-enabled websites. In addition, some modifications to the server on the

websites have to be done in order for this implementation to work. This is not realistic

due to the millions of websites on the web. The nym system used on top of the Tor

system is equally compared to browsing the Internet with two TLS connections. This is

not a good idea because it will probably be extremely slow. It seems that this solution is

geared towards only one website.

2.3.2 Nymble

Nymble is a system that allows websites such as the free user-built encyclopedia Wikipedia to

selectively block anonymity users that use an anonymity network such as Tor. Abusive
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users use the Tor network to cyber-vandalize useful websites such as Wikipedia and system

administrators have no other choice but to block all incoming traffic coming from these

anonymity systems blocking all users including the innocent ones. Nymble designers came

up with a way to address this problem [28]. We describe it in the following five properties:

• Honest users remain anonymous and their request cannot be linked.

• Servers will have the ability to blacklist an anonymous user for future connections and

put a complaint on this blacklisted user.

• This blacklisted user’s accesses remains anonymous before the complaint.

• Next time the blacklisted user logs on; he will be notified of this status.

• Users are aware of their blacklist status before accessing a service.

How it works

The user connects to the Pseudonym Manager (PM) directly to get a pseudonym. This

pseudonym or alias is mapped to the user’s IP address. After the user gets his pseudonym he

connects to the Nymble Manager (NM) by using the Tor system and requests nymbles which

are a special type of pseudonyms for access to a particular website for example: Wikipedia.

Nymbles are generated using the user’s pseudonym and the server’s identity. Websites can

blacklist users by obtaining a seed for a particular nymble, allowing them to link future nymbles

from the same user. Therefore, websites can blacklist anonymous users without the knowledge

of their IP addresses while allowing behaving users to connect anonymously. Misbehaving users

are aware of their blacklist status. They won’t be able to connect for a period of one day or

whatever the linkability window is set to if they are blacklisted. However, after the linkability

window period expires they can access the system again.

Limitations The Nymble implementation is not feasible because the attacker will only be

blocked for a period of time based on the linkability window. The period of time that

is most commonly used is one day. The attacker will be back the next day and commit
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more abuse or the attacker may have more than one disposable machines. Even though,

the system ensures that the users are aware of their blacklist status before they present a

nymble, there is no evidence to support how they make the user to disconnect immediately

from their system if they are blacklisted. The authors claim that building a credential

system such as this one will add a layer of accountability to any publicly known anonymity

network, but we believe that this will only impede abusers temporarily or they can simply

log on to their other computers or virtual machines and go about their business. There

is also the possibility of the PM and the NM colluding to de-anonymize the user.

2.3.3 Nymbler

Nymbler is a proposed improvement on the Nymble system using zero knowledge proofs and a

new cryptographic technique called verifier efficient restricted blind signatures (VERBS)

[31]. They eliminate the use of trusted third parties referring to the PM and the NM

described above that can easily collude to violate a user’s anonymity. Users are permitted

to construct their own nymbles using anonymous credentials. This approach uses RSA

based signature similar to Chaum’s combined with zero-knowledge proofs that allow the

user to prove certain properties about the message before it is signed. They replace

the PM with the Credential Manager (CM) and their scheme allows a user to construct

his/her own set of nymbles in such a way that the NM is convinced of their validity

without ever actually seeing them. Figure 2.2 depicts a Nymbler system. Then, the NM

issues the user with VERBS on his/hers nymbles so that the SP can also be convinced of

their validity.

In order for a user Alice to obtain service from an SP, the following steps need to be followed:

1. Alice connects directly to the CM to get a credential.

2. Alice connects anonymously to the NM to gain access to a particular website, in this case

the (SP).

3. Alice computes a set of nymbles, she proves to the NM in zero-knowledge that this was

done correctly to obtain a VERBS on each nymble.
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4. Alice connects anonymously to the SP. She checks the blacklist and then presents the SP

with a nymble together with a VERBS from the NM for that nymble.

5. The SP checks the linking list to ensure Alice is not banned, and then verifes that the

VERBS is valid and stores the nimble in a log file and grants access to Alice.

6. If Alice misbehaves during her session with the SP, the SP reports her misbehavior to

the NM by presenting it with the nymble used by Alice during that session.

7. The NM uses this nymble to compute Alice’s subsequent nymbles for the remainder of

the linkability window. Each of these nymbles is added to the linking list, and the final

nymble is added to the blacklist. This allows the SP to detect any future connection

attempts by Alice for the remainder of the linkability window.

Limitations The authors of Nymbler presented a new anonymous blacklisting scheme modeled

after Nymble. They claimed to eliminate the trusted third parties used in Nymble but

they just replaced the PM with a Credential Manager. This implementation is not scalable

either because of the amount of computations added to the simple process of logging into

a website. The service provider (SP) could be any website that the user wants to log on

to. Any customer that wants to implement the Nymbler design will have to re-design

their website. This will incur costly web design expense fees for a non-profit organization

or anyone that adopts this system.

Recent blacklisting system

Jack is another blacklisting scheme. The authors recently published their work. The scheme

is based on cryptographic accumulators and is secure against TTP collusion and provides

improved scalability compared to previous schemes [43].

Overview

In this Chapter, previous research work on anonymity systems was presented and described.

Obviously, all of the systems that have been developed were not covered but focus on the
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Figure 2.2 Nymbler Scheme Architecture

relevant ones to this research were introduced and described in detail. Some of these systems

are theoretical and might not get deployed to a full working system. However, for the sake of

emphasizing the research it is always good practice to include work done by other researchers.

The limitations on the Nym based systems are that these blacklisting systems only “blacklist”

or “block” a malicious user temporarily. The same malicious user can come back the next day

and do more damage. The next Chapter will present the contributing work on anonymity.
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CHAPTER 3. PRELIMINARIES

This Chapter begins with some background theory on bilinear mappings, tate pairings and

elliptic curves. A brief background on the RSA algorithm is described, all that background is

then used to explain the accountable anonymity scheme.

3.1 Bilinear Mappings

In order to describe bilinear mappings we must first define some basic group theory defini-

tions.

Basic Definitions

3.1.1 Groups

One of the most familiar groups is the set of integers, Z which consists of the numbers:

. . ., -4, -3, -2, -1, 0, 1, 2, 3, 4, . . .

A group is a set, G, together with an operation • that combines any two elements a and b to

form another group element, denoted a • b or ab. To qualify as a group, the set and operation,

(G,•), must satisfy four requirements known as the group axioms [38].

Closure ∀ a, b ∈ G, the result of the operation, a • b, is also in G.

Associativity ∀ a, b and c ∈ G, (a • b) • c = a • (b • c).

Identity Element ∃ e ∈ G, ∀ a ∈ G, the equation e • a = a • e = a holds. The Identity

element of a group G is often written as 1 or 1G.

Inverse Element ∀ a ∈ G, ∃ b ∈ G such that a • b = b • a = 1.
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3.1.2 Abelian Groups

Abelian groups posess the same requirements mentioned above for a group, and contains

the commutative property as well.

Commutativity ∀ a, b ∈ G, a • b = b • a.

3.1.3 Cyclic Groups

A cyclic group is a group in which there is an element x such that each element of the group

may be written as Xk for some integer k. In additive notation, this translates to k • x where

x is a generator of the cyclic group or that the group is generated by x. As an example, the

integers under addition is a cyclic group. The number 1 is a generator. This is because for any

n in the integers n = n • 1. Note that -1 is also a generator. It follows that a cyclic group is

an abelian group although not every abelian group is a cyclic group.

3.1.4 Bilinear Maps

Let G1, G2, and Gt be cyclic groups of the same order.

Definition

A bilinear map from G1 ×G2 to Gt is a function:

e: G1 ×G2 7→ Gt such that ∀ u ∈ G1, υ ∈ G2, a, b ∈ Z, e(u, v)ab.

Bilinear maps are called pairings because they associate pairs of elements from G1 and G2

with elements in Gt where Gt is a cyclic group. More details are given on pairings on the next

section. Here are the most common new problems that have been defined and assumed hard

in the new bilinear context [4].

Bilinear Diffie-Hellman Given g, ga, gb, gc, compute e(g, g)abc (something like a “three-way”

CDH but across the two groups)

Decisional Bilinear Diffie-Hellman Distinguish g, ga, gb, gc, e(g, g)abc from g, ga, gb, gc, e(g, g)z

k-Bilinear Diffie-Hellman Inversion Given g, gy, gy
2
, . . . gy

k
, compute e(g, g)1/y
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k-Decisional Bilinear Diffie-Hellman Inversion Distinguish g, gy, gy
2
, . . . gy

k
, e(g, g)1/y from

g, gy, gy
2
, . . . gy

k
, e(g, g)z

3.2 Elliptic Curve Cryptography

Elliptic curves

The use of elliptic curves in cryptography (ECC) was first introduced by Neal Koblitz a mathe-

matics Professor at the University of Washington [17] and Victor S. Miller in 1985 an American

mathematician at the Center for Communications Research (CCR) of the institute for Defense

Analyses in Princeton, New Jersey [23]. The U.S. National Security Agency (NSA) has en-

dorced ECC by including schemes based on it in its Suite B set of recommended algorithms

and allows their use for protecting information classified up to the top secret with 384-bit keys.

Full details of the ECC algorithms are not given, but we introduce the concept here because

ECC is used in the A2S system.

An elliptic curve is the set of solutions (x,y) to an equation of the form:

y2 = x3 + x (3.1)

together with an extra point O which is called the point at infinity.

How it works

This is a very simple example of an Elliptic curve group over Fp consider an elliptic curve over

the field F23. With a = 1 and b = 0, the elliptic curve equation is y2 = x3 +x. The point (9,5)

satisfies this equation since:

y2 mod p = x3 + x mod p

25 mod 23 = 729 + 9 mod 23

25 mod 23 = 738 mod 23

2 = 2

The 23 points which satisfy this equation are: (0,0),(1,5),(1,18),(9,5),(9,18),(11,10),(11,13),(13,5)

(13,18),(15,3),(15,20),(16,8),(16,15),(17,10),(17,13),(18,10) (18,13),(19,1),(19,22),(20,4),(20,19),

(21,6),(21,17).
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3.3 RSA Algorithm

The RSA algorithm is currently the most widely used public key scheme which was created

by Rivest, Shamir and Adelman in 1978 at MIT and is based on the difficulty of factoring large

numbers and that is how it gets its security[32]. The difficulty of getting the plaintext message

back from the ciphertext and the public key is related to the difficulty of factoring a very large

product of two prime numbers. Here is a simple example and then the A2S discussion continues

with proxy re-encrytion.

Illustration

Suppose that two very large prime numbers are given, say 200 digits long and multiply them

together, the result provides two properties:

1. The result is very large, about 400 digits in length.

2. It has two factors, both prime numbers, which are the two primes we multiplied together.

The product is easily found, given the two prime numbers. But finding the primes given

only the product is more difficult, so difficult that once the numbers get larger, it is almost

impossible to find them. There is not enough computing power to do so.

The RSA asymmetric algorithm uses this fact to generate public and private key pairs where

finding the inverse, the factor finding operation is difficult.

3.3.1 Key Generation

Key Generation

1. Generate two large random primes, p and q of approximately equal size such that their

product n = pq is of the required bit lenght, e.g. 1024 bits.

2. Compute n = pq n is used as the modulus for both public and private keys.

3. Compute ϕ(n) = (p-1)(q-1), where ϕ is Euler’s totient function.

4. Choose an integer e such that 1 < e < ϕ(n) and gcd(e,ϕ(n)) = 1.
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5. Compute the secret exponent d, 1 < d < ϕ(n), such that ed ≡ 1 mod ϕ(n)

3.3.2 Encryption

Encryption

Sender A does the following:

1. Obtains the recipient’s B’s public key (n,e).

2. Represents the plaintext message as a positive integer m.

3. Computes the ciphertext c = me mod n.

4. Sends the ciphertext c to B.

3.3.3 Decription

Decription

Recipient B does the following:

1. Uses his private key (n,d) to compute m = cd mod n.

2. Extracts the plaintext from the message representative m.

3.4 Proxy Re-Encryption

The concept of proxy re-encryption was first introduced by Blaze, Bleumer and Strauss in

1998 [20]. Proxy re-encryption converts the ciphertext under one public key to the ciphertext

under another public key without decryption. However, the proxy cannot learn anything about

the messages encrypted under either key. Although a number of proxy re-encryption (PRE)

schemes have been proposed [3] [9] [29], none of them is feasible to build anonymous systems.

To implement anonymity in a communication network, a new, discrete logarithm based, sym-

metric proxy re-encryption scheme is presented. This proxy re-encryption scheme was designed

by Gang Xu, another Ph.D. student. This proxy re-encryption scheme has four algorithms

KeyGen, Encrypt, Re-Encrypt, Decrypt.
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Global Parameter

This cryptosystem operates over a multiplicative group G of prime order q. P is a generator

of G.

KeyGen

Select separately at random two different numbers.

x and y ∈ Z∗q (3.2)

Alice’s Key is KA = x (3.3)

Bob’s Key is KB = y (3.4)

The proxy re-encryption Key is rkA→B = (y − x) (mod q) (3.5)

Encrypt

The ciphertext for Alice is (Anyone that knows Alice’s key can do the encryption):

m ∈ G is a message.

CA = mPKA (3.6)

= mP x (3.7)

Re-Encrypt

The Proxy re-encrypts the ciphertext simply by the raise of a power operation and multiplica-

tion operation.

OUTPUTre = {cA} ∗ P rkA→B (3.8)

= (mP x) ∗ P (y−x) (3.9)

= mP y (3.10)

= mPKB (3.11)

Notice that mPKB is exactly the ciphertext cB encrypted by Bob’s secret key.

Decryption
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with Bob’s key KB = y, one can compute m from

CB/(PKB ) (3.12)
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CHAPTER 4. A2S DESIGN AND ARCHITECTURE

This Chapter begins with the communication protocol phases in the A2S system and ends

with the forensic feature and the steps to conduct a forensic investigation.

4.1 Design

A part of this protocol is based on the AFGH algorithm [9]. This scheme operates over

two groups G1 and G2 of prime order q with a bilinear map e : G1 × G1 7→ G2. The system

parameters are random generators g ∈ G1 and Z = e(g, g) ∈ G2.

The following problem is believed to be a hard problem. G is a group of prime order q ,

g is its generator. a ∈ Z∗q ,Z∗q = 1,2,. . ., q . 1/a is a’s multiplicative inverse over Z∗q . If g1/a is

known, it is a hard problem to get ga. (Both g1/a and ga are over G).

AFGH algorithm’s parameters and functions are followed. G1 and G2 are groups of prime

order q with a bilinear map.

4.2 Operation

There are four kinds of system nodes:

• Directory Servers (DS) play the same role as directory servers in the Tor system.

• Registration Database (RD) is a trusted third party.

• Key Generator (KG) is a trusted third party.

• Peer onion routers (POR) POR’s forward messages as OR’s in Tor. Also, every user

node is a POR.
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4.3 Protocol Phases

4.3.1 Setup Phase

The RD is the main part of the anonymity service provider. RD has a confidential database

and has sufficient computing ability. It also maintains a website to provide a part of keys

for anonymous communication. KG is a trusted third party and does not require any kind of

storage mechanism. At the setup stage, KG generates a secret SECKG = x and a public key

pair {PKKG, SKKG}. The DS setup is similar to the Tor directory servers. Table 4.1 provides

the key possession of each of the nodes.

Suppose user node Ai wants to send an anonymous message m to Aj . Figure 4.1 shows

Table 4.1 Key Possession

Node Key Posession Comments

Ai ski, dk2, eki ∀Ai ∈ S

KG PKKG, SKKG, SECKG

a description of the onion and proxy re-encryption. Figure 4.2 shows the notations on our

symbols used.

4.3.2 Registration Phase

1. User Ai selects at random θi ∈ Z∗q , keeps ski = θi as his secret key. He calculates

{g1/θi , gθi}. He also generates an AES key, this key is called key and encrypts it using

KG’s public key PKKG and gets (key)PKKG, and then sends the tuple { IDi, g
1/θi , gθi,

(key)PKKG} to KG through a secure TLS connection.

2. Upon receiving the tuple, RD verifies e(g1/θi , gθi) = Z. If the equation holds, he will

recognize the tuple is a valid registration information.

3. RD reandomly selects u ∈ Z∗q and calculates guθi .

4. RD sends { g1/θi , guθi, (key)PKKG } to KG through a secure TLS connection.

5. KG calculates {gxu/θi , guθi/x}. Secondly, KG decrypts (key)PKKG using its secret key

SKKG and gets key. Thirdly, KG calculates Ekey(S(gx/θi)).
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6. KG sends {gxu/θi , Ekey(S(gx/θi)), guθi/x} to RD.

7. RD calculates {gx/θi , gθi/x}. He stores {IDi, g
1/θ, gxθi} in the tracing key database.

8. RD publishes {IDi, g
xθi}.

9. RD forwards Ekey(S(gx/θi)), gθi/x to Ai.

4.3.3 Communication Phase

This part describes the procedure of a communication session. Suppose user Ai wants to

send an anonymous message m ∈ G2 to user Aj . During the process of this communication,

regular anonymity needs to be attained. Our system acts as follows:

Sender

This is what the sender does. The initial user Ai knows the routing network topology and selects

a route, this is similar to the steps in the onion routing network. Ai generates a sequence of

route information along with corresponding proxy re-encryption keys in the form of an onion.

This is called the onion header. The message content part is called the payload. Figure 2

shows the structure of the onion header. Each layer contains the information for corresponding

intermediate nodes.

Let the route be: Ar1, Ar2, Ar3, . . . , Arn, Aj . That is: the next hop from the intermediate node

Art is to the node Art+1, (t = 1,2,. . ., n), and Aj is the destination. The intermediate nodes

acts as proxies during the message forwarding. They use corresponding proxy re-encryption

key to re-encrypt the payload.

Ai randomly chooses x1, x2, . . . , xn and y1, y2, yn from Z∗q and calculates (x1+x2+. . .+xn) mod

q and (y1 + y2 + . . .+ yn)modq. Ai also calculates gθj/θi from gxθj .

Generally the (t - 1)th layer contains the next hop Art and corresponding re-encryption key

rk1t = xt, rk2t = yt. In particular, the most inner layer contains decryption keys dk0 = x1 +

x2 + . . .+ xn mod q, dk1 = y1 + y2 + . . .+ yn mod q, dk2 = S(gx/θi), dk3 = gxj/θi .

User Ai calculates the ciphertext co = {gθi·k/x,mZ
k} using the encryption key eki = gθi/x, where
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k is a random number. User Ai send the encrypted payload co = {gθi·k/x,mZk} along with the

onion header to the node Ar1.

Intermediate Nodes

This is what an intermediate node does. At an intermediate node Ar1, (t = 1,2,. . ., n) first the

onion header is decrypted and the next hop Art+1 is identified. Also from the onion header

he learns the re-encryption key rk1t = yt, rk
2
t = yt. He then picks up the proxy key rk1t = yt,

rk2t = yt and re-encrypts the payload. Art+1 gets:

{gx1+x2+...+xt+(θi·k/x),mZ(k+y1+y2+...+yt)} Then Art outputs the remained part of the onion

header along with the payload ct to the next hop Art+1.

Receiver

This is what the receiver does. At the node Aj , first Arn the onion header is decrypted and

therefore the decryption keys dk0 = x1+x2+ . . .+xn mod q, dk1 = y1+y2+ . . .+yn mod q, dk2

= S(gx/θi), dk3 = gxj/θi are known.

The payload received is denoted by cn = {α, β}. User Aj verifies whether dk3 is valid. He

calculates dk
1/θj
3 and checks whether (Sdk

1/θj
3 ) = dk2 holds. If the verification fails, he throws

out the received data. If the verification passes, user Aj decrypts the payload as follows: m

= β/Zdk1

e(α/gdk0 ,dk3)(1/θj)
. If the receiver finds out that this message is malicious, it is reported to a

Law Enforcement Officer. The system will switch to the forensic investigation state from this

point on.

4.4 Forensic Investigation

The general procedure is as follows: The victim sends a report along with collected evidence

to a Law Enforcement Officer (LEO). LEO initiates the forensic investigation. LEO provides

the evidence to KG and asks for cooperation. KG processes the evidence and gives converted

evidence to LEO. LEO then sends it to the RD with a subpena. By searching RD’s database,

the source of the malicious message is found. Suppose the destination user node Aj finds out

that the received message m is malicious and thus wants to find out the source of the message.
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User node reports it to the Law Enforment Officer (LEO) with evidences which is acquired in

step 7 on normal state. EV1 = m, EV2 = mZk, EV3 = α/gdk0 = gθik/x, EV4 = gx/θi, EV5 =

S(gx/θi).

LEO investigates the case as follows:

1. LEO determines the message m is a malicious message and tracing the source is needed.

2. LEO verifies S(EV4) = EV5. If it does not hold, evidences are invalid and tracing termi-

nates.

3. LEO verifies EV2/e(EV3, EV4) = EV1.

4. LEO takes S(EV4) to KG and asks for cooperation. If KG agrees, KG will compute

EV
1/x
4 and gives it to LEO.

5. LEO takes EV
1/x
4 to RD with a subpena. With the cooperation of RD, the database is

searched. If EV
1/x
4 appears in a tuple, the RD outputs corresponding ID’s. If no tuple

matches, it reports an error.

The tracing steps that are taken to trace the criminal is shown in Figure 4.2. In this

Chapter, the A2S system design was described in detail and some mathematical background

and theory was applied to construct the proxy-re-encryption scheme. The next Chapter will

describe the A2S system implementation.
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Table 4.2 A2S Notation

Symbol Value Comments

S The set of system nodes

Ai A system node

IDi The ID of node Ai
DS The Directory Server

RD The Register Database

KG The Key Generator

e() A bilinear mapping function

Ek(m) AES encryption function with the key k

S() KG’s signature calculation function

PKKG KG’s public key

SKKG KG’s secret key

SECKG x KG’s secret

eki gθi/x Ai’s encryption key

ski θi Ai’s secret key

rk1t xt The first proxy re-encryption key for Art
during the communication session be-

tween Ai and Aj
rk2t yt The second proxy re-encryption key for

Art during the communication session be-

tween Ai and Aj
dk0 x1 + x2 + . . .+ xn mod q The first decryption key for Aj during the

communication session between Ai and Aj
dk1 y1 + y2 + . . .+ yn mod q The second decryption key for Aj dur-

ing the communication session between Ai
and Aj

dk2 S(gx/θi) The third dencryption key for Aj dur-

ing the communication session between Ai
and Aj

dk3 gxθj/θi The fourth dencryption key for Aj dur-

ing the communication session between Ai
and Aj

c0 { gθ/i∗k/x,mZk } Ai ciphertext encrypted by the initiator

Ai
ct { gx1+x2+...+xt+(θi∗k/x),mZ(k+y1+y2+...+yt) } Ai ciphertext re-encrypted by the inter-

mediate node Art
EV1 m The first evidence provided to LEO

EV2 mZk The second evidence provided to LEO

EV3 g(θik/x) The third evidence provided to LEO

EV4 g(x/θi) The fourth evidence provided to LEO

EV5 S(g(x/θi)) The fifth evidence provided to LEO



www.manaraa.com

38

RSA Onion Header

Proxy Re-Encrypted 

Payload

RSA Onion Header

Proxy Re-Encrypted

Payload

RSA Onion Header

Proxy Re-Encrypted

Payload

Onion Header

Payload

IP Address -David

Proxy Re-

Encryption David

Encrypted 

Message

IP Address – David

Proxy Re-Encryption 

Carol

IP – Address Carol

Proxy Re-

Encryption - Bob

IP Address - David

Proxy Re-

Encryption David

IP Address - Carol

Encrypted 

Message

IP Address -David

Proxy Re-

Encryption David

Encrypted 

Message

Decrypted 

Message

Alice Bob Carol David

Alice wants to send 

message to David

Figure 4.1 Message Routing



www.manaraa.com

39

Victim

Incident 

report

LEOCooperation 

requirement with a 

subpoena

Re-encrypted 

evidence

Evidence requirement 

with subpoena

Source of 

cybercriminal
Source of 

cybercriminal with 

evidence

The 

Court

KG

RD

Figure 4.2 Tracing Process



www.manaraa.com

40

CHAPTER 5. A2S IMPLEMENTATION

The implementation of the A2S system will be described. Details on the platform setup

will be given, as well as some information on the evaluation of the system and a performance

discussion.

5.1 Discussion

5.1.1 Programming Languages

Preferred Choice

C++ was chosen instead of Java for this implementation. C++ and Java are similar in syntax.

This similarity makes it straightforward for C++ developers to learn Java. However, these two

languages are different in many ways because of their different design goals.

C++ features are:

• Rapid development

• Security

• Portability

• Backward compatibility with C

• Memory Management

• Pointers

• Preprocessor
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• C++ is compiled into native machine code

• Objects are passed by value

• Automatic type casting

• Methods must be declared virtual

Java features are:

• Garbage Collection

• Templates

• Multiple Inheritance

• Objects are passed by reference

• All methods are virtual

Java is compiled to virtual machine byte code and requires a virtual machine to run. So

this implementation was chosen with C++ features in mind. The main reason for choosing

C++ is that our crypto libraries are written in C and C++.

The Following Figures Illustrate some of the implementation’s code:

Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6.

5.1.2 Object Oriented Programming

Benefits

What are the advantages of object-oriented programming? The most obvious advantage of

object oriented programming’s (OOP) is that it provides an excellent way to model the real

world by associating data to the methods operating on them. This is accomplished by retaining

the values of the member variable throughout the life of the object and preventing direct access

to member variables from outside the class. Parts of the program outside the class may work
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with the member variables only through methods that allow the caller to retrieve and modify

the data. Large projects are more manageable because parts of the project are easily isolated

and this is referred to as encapsulation.

Inheritance

Inheritance is another unique benefit of OOP. Inheritance encourages code reuse and it makes

large libraries more manageable and easy to use. The A2S system takes advantage of this feature

by inheriting the MIRACL library. This code reuse leads to faster development. Inheritance

makes OOP a better way to program [18].

Polymorphism

Polymorphism means one name, many forms. With polymorphism multiple methods can have

the same name but different functionality. It is achieved by method overriding and method

overloading. Overriding, is also called run-time polymorphism. Overloading, is referred to

as compile-time polymorphism. The difference is that for method overloading, the compiler

determines which method will be executed, and this is decided when the code is compiled. For

method overriding, the method that is beign used is determined at runtime [18]. The A2S

system takes advantage of this feature by overloading the MIRACL library methods.

5.1.3 Latency and Bandwidth

Issues

What are the two major issues in networking performance? Any network can be measured

by two major characteristics: latency and bandwidth. Latency refers to how long it takes a

given bit of information to get through the network. In Chapter 1 we mentioned the service

tool Ping which can be used to measure round trip latency. Bandwidth refers to the rate at

which data moves through the network once communication is established. The perfect network

would have infinite bandwidth and no latency. A pipe is a good analogy for a network. The

time it takes for a water molecule to go through the whole pipe is determined by the length;

this is analogous to the latency. The width of the pipe determines the bandwidth: how much
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water can pass in a given time. Latency and bandwidth problems are often encountered when

performing searches on the Internet. A good indication of good bandwidth but high latency is

when a webpage takes a long time to display and then it appears quickly. On the other hand,

if a webpage starts loading right away but takes a long time to load, this is a good indication

of a low-latency, low-bandwidth connection.

5.2 Hardware

5.2.1 Computer Forensics Lab Computers

The implementation of the A2S system on a private computer network was done in the

Computer Forensics lab. The system consists of five networked Dell OptiPlex GX280 2.8GHz

Intel Pentium 4 Single Core, 80GB Hard Drive, 2GB RAM computers. Figure 5.7 shows a

graphical description of the network setup. IP’s were configured manually so every time one

system was rebooted, the IP address does not get re-assigned. A hub and a new router with

wireless capabilities was also used.

5.3 Software

5.3.1 Fedora Linux

Fedora Linux

The previous configuration on all the computers was erased and a fresh copy of Fedora Linux

13 was installed and all the software needed to run the programs was also installed.

5.3.2 Tor Test Software

Tor Test Software

At the beginning of the research, the question of how the Tor system worked was brought up

by the research team. A successfull installation and configuration of the Tor software to run

on all systems for a while was done.



www.manaraa.com

44

5.3.3 Network Analysis

Network Analysis

Packets going through the network were analyzed with a tool called Wireshark.

5.3.4 MIRACL Crypto Library

The A2S system was implemented using a cryptographic library called MIRACL which is a

big number library that implements all the primitives necessary to design big number cryptog-

raphy in an application [19]. Some issues with our MIRACL library and the RSA decryption

algorithm were evident in the testing phase of the implementation and as a consequence of

this, it was decided to put the decryption function separately for the time being. The RSA

decryption algorithm was conflicting with the proxy re-encryption algorithm.

5.3.5 OpenSSL Crypto Library

OpenSSL cryptographic library was used to create self signed certificates for the database

and the clients and to develop software that creates a TLS connection between the RD and

KG trusted third parties.

5.3.6 Kdevelop IDE

For the C++ development, a Kdevelop IDE and the g++ compiler were used and integrated

subversion to keep track of the changes. For the graphical user interfaces, a tool called Qt

Designer was used.

5.3.7 Debugger

For debugging purposes, gdb and a tool called data display debugger (DDD) was used.

5.3.8 Database Technologies

For the database, a MYSQL server with secure remote capabilities was implemented.
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5.4 Evaluation

A good evaluation tool called sloccount that counts the number of lines of code was used

and it was run in one of the system folders [37]. Figure 5.8 shows an estimation on how long

it would take for a project this size, it also shows how many software developers are needed to

do this job. Obviously, the code contains the library which contains a lot of code but it can

give a good indication of how meaningful this project is.

5.5 Performance

The A2S system was run for a total of three months straight, every day including weekends

to make sure all the operations done on the plaintext were correct and that the transmission

was working properly, bugs were fixed along the way. Table 5.1 shows the performance of the

system and the average of time it takes to compute the new proxy re-encryption algorithms. It

is assumed that not all users have top of the line computers equipped with Dual Core processors

and lots of memory so the system setup seems to measure good computing times due to this

fact. According to the Tor website, there is no benchmark mode currently in the Tor system.

They have an open ticket for this issue as part of a new enhancement. It is concluded that the

performance of the various algorithms used (e.g. RSA, AES, number of circuits built, amount

of memory, open connections) is not known at this time or if it is known it is only known to

the Tor developers. One way of finding out how long the Tor software really takes is to modify

the software, recompile it and run it with the new statistical modifications. It was mentioned

earlier in Chapter 1 that a single TLS connection takes an enormous amount of time: it takes

669 ms to complete the TLS handshake.

Based on the amount it takes to complete a TLS handshake, a comparison is made to the

A2S system and the software takes an average of 113 ms from the onion construction to proxy

encrypting and sending the data. The reduced computation costs are an advantage to the A2S

system. The A2S system performed well in a small test network and we are aware of the fact

that the latency is greatly increased when the network grows in size as users join the network

and it’s hard to measure the time consumed. Overall, the A2S system performs better than
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the current Tor system based on the facts mentioned previously.

Table 5.1 Performance Evaluation

Algorithm Time in milliseconds

Key Generation 3 ms

RSA Encryption 10 ms

Proxy Encrption 10 ms

Proxy Re-encryption 10 ms

Proxy Decryption 20 ms

Onion Construction 60 ms

Source to Destination 452 ms

5.6 Deployment Considerations

We believe our system has a good chance of being accepted by the community. The system

needs to be downloaded and installed without the need of many configuration settings and

the lowest complexity for the end user. The more users there are on the network the more

anonymity they will have. So basically, what we need to deploy it, is many people to test it

and volunteers to help with the developing. We also need the following:

5.6.1 Scheduling Strategy

Best Route - Unlike the Tor system that the route is chosen for the user under what nodes

are available at the time. The A2S system will display a user friendly map of the network

to the user. This map will contain important information such as bandwidth, throughput

and where the nodes are located. This will help the user decide what node to choose.

Scheduling

• Round robin - one of the simplest scheduling algorithms for processes in an operating

system, which assigns time slices to each process in equal portions and in circular order.

Round robin scheduling can be used as data packet scheduling in computer networks.

The Tor network uses round robin.
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• Fair queing - Since the size of data is varied on the network, some data can be very

large and this can be favored over the other users. For example, one user could be using

BitTorrent on Tor and other users on the network would be given lower priority. We plan

to implement a Fair queuing scheduling algorithm for our system. Fair queuing takes

into account data packet size to ensure each flow is given equal opportunity to transmit

an equal amount of data. Current research shows that this method avoids Network

congestion [41].

Software Development

The remaining issues have to be fixed and we need to port out the software to Windows systems,

Mac systems and test it many times. A Unit Test procedure needs to be followed. A website

needs to be developed so people know about this software project.

The deployment should be branched out in stages:

1. Initial Stage - The system will be launched as an email remailer.

2. Middle Stage - The system will be launched as a email remailer and chat service.

3. Full Stage - The system will be a full TCP/IP service capable of web browsing, chatting,

and sending emails anonymously but with accountability features.

Security

• Penetration testers will be needed to attack the system to make sure there are no vulner-

abilities.

• All crypto will need to be verified that is free of leaking data.

Other

MIT researchers were the last ones to produce a similar scheme but for one hop and bugs were

discovered in their code, our scheme is multi-hop. The software needs to be licensed under a

General Public License (GPL) or similar license. We need to start a Non-Profit Corporation.
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We need to come up with a good name for the software, a name that does not confuse our

system with the Tor project, a simple name that gets our point across to people. A small

marketing campaign is needed to promote accountable anonymity in a positive way and we

need to come up with a jingle. The system needs to be promoted in security and software

conferences, and we need to give the software away for free so people can try it.
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int  
main() 
{ 
    miracl *mip=mirsys(16,0);   // thread-safe ready. (32,0) for 1024 bit p 
    ifstream common("publicparams.cfg"); 
    ifstream publickeysfile("public.keys"); 
    ifstream secretkeysfile("secret.keys"); 
    ifstream plaintext; 
    ifstream ciphertext; 
    ofstream ciphertextenc; 
    ofstream decrypted; 
    ofstream delegator; 
     
    ECn P,Ppub; 
    ZZn2 gid,cube,w, Z; 
    Big p,q,r,x,y, paramsqsquared; 
    int i,bits; 
    int ZZn2Tochar (ZZn2 &z, char *c, int s); 
    int BigTochar (Big &x, char *c, int s); 
 
   common >> bits; 
   mip->IOBASE=16; 
   common >> p >> q; 
   paramsqsquared = pow(q, 2); 
   
  common >> x >> y; 
     
#ifdef AFFINE 
    ecurve(0,1,p,MR_AFFINE); 
#endif 
#ifdef PROJECTIVE 
    ecurve(0,1,p,MR_PROJECTIVE); 
#endif 
 
    P.set(x,y); 
 
    common >> x >> y; 
    cube.set(x,y); 
    mip->IOBASE=10; 
    cout << "Cube: " << cube << endl; 
    mip->IOBASE=16; 
 
    common >> x >> y; 
    Z.set(x, y); 
    mip->IOBASE=10; 
    cout << "Z: " << Z << endl; 
    mip->IOBASE=16; 
 
    ZZn2 Zpub1;  
    ECn Ppub2; 
    publickeysfile >> x >> y; 
    Zpub1.set(x,y); 
    publickeysfile >> x >> y; 
    Ppub2.set(x,y); 
    publickeysfile.close(); 
    common.close(); 

Figure 5.1 Sample Code 1
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    thetaiinv = inverse(thetai, q);  
    //g^(1/thetai) Ai idkey1 
    c11 = thetaiinv * P; 
    //g^thetai is Ai idkey2 
    c12 = thetai * P; 
     
    thetaj = rand(q); 
    thetajinv = inverse(thetaj,q); 
    c13 = thetajinv * P; 
    c14 = thetaj * P; 
    
    //KG idkey 
    kgx = rand(q); 
    kgxinverse = inverse(kgx, q); 
     
    //g^x*thetaj/thetai 
    Big kgxres = kgx * thetaj * thetaiinv; 
    key2 = kgxres * P; 
     
    Big te = thetai * kgxinverse; 
    Enckey_a = te * P; 
    
    Big k = rand(q); 
     //this is c' 
    ciphertext1 = k * Enckey_a; 
    
    
    plaintext.open("testfile.txt", ios::in | ios::binary); 
    if (!plaintext) 
    { 
      cout << "unable to open file" << plaintext << "\n"<<endl; 
    } 
         
    int size;     
    plaintext.seekg(0,ios::end); 
    size = plaintext.tellg(); 
    plaintext.seekg(0,ios::beg); 
    buffer = new char[size]; 
    memset(buffer,0,sizeof(buffer)); 
    plaintext.read(buffer, size); 
    plaintext.close(); 
    cout.write(buffer,size); 
     // Compute res2 = plaintext * Z^k   
    
     // Next, encode the plaintext as Big 
    Big msg = 0; 
    msg = from_binary(size, buffer); 
    cout << "msg : " << msg << endl; 
    // Compute res2 = plaintext * Z^k 
    zPlaintext.set(msg,0); 
    temp = pow(Z, k);     
    c22 = zPlaintext * temp; 
    cout << "encrypt: Z = " << Z << endl; 
    cout << "encrypt: temp = " << temp << endl;    
    cout << "encrypt: plaintext = " << zPlaintext << endl;   
    cout << "encrypt: c11 = " << c11 << endl; 
    cout << "encrypt: c22 = " << c22 << endl; 
     delete[] buffer; 

 

Figure 5.2 Sample Code 2
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    // Set the ciphertext2 file with (ciphertext1, c22) 
    mip->IOBASE=16; 
    ciphertext1.get(x,y); 
    ciphers << x << endl; 
    ciphers << y << endl; 
    c22.get(x,y); 
    ciphers << x << endl; 
    ciphers << y << endl; 
      
    ciphers.close(); 
     
    ////////////////////////////////////////////// 
    ////////////////////////////////////////////// 
    //decrypting message here to test if we got it 
    //second level ciphertext, this decryption part 
    //wont be part of encryption function 
    //we are just checking here 
    ////////////////////////////////////////////// 
    ////////////////////////////////////////////// 
 
    ECn del; 
    ZZn2 temp4; 
    ZZn2 result2; 
    Big temp5 = thetaiinv * kgx; 
    del = (temp5 * P); 
    
    if (ecap(ciphertext1, del, q, cube, temp4) == FALSE) { 
      cout << "Pairing computation failed.  Please try again with a different seed." << endl; 
      exit(1); 
    } 
 
    result2 = c22 / temp4; 
    result2.get(msg); 
     
    ////////////////////////////////////////////////////// 
    //we need to open ciphertext2 file and get c11 and c22 
    ////////////////////////////////////////////////////// 
    ciphertext.open("ciphertexts2", ios::in | ios::binary); 
     if (!ciphertext) 
    { 
      cout << "unable to open file" << ciphertext << "\n"<<endl; 
      exit(1); 
    } 
      
    ciphertext.seekg(0,ios::end); 
    size = ciphertext.tellg(); 
    ciphertext.seekg(0,ios::beg); 
    buffer = new char[size]; 
    memset(buffer,0,sizeof(buffer)); 
    ciphertext.read(buffer, size); 
    ciphertext.close(); 
    int n=0; 
    n = ZZn2Tochar(result2, buffer, size); 
    cout << "n = " << n << endl; 
     
    cout << "Decrypting Message\n"; 
 

 
Figure 5.3 Sample Code 3
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    decrypted.open("decrypted2.txt", ios::out | ios::binary); 
    if(!decrypted) 
    { 
      cout << "Unable to open file" << decrypted << endl; 
      exit(1); 
    } 
     
    int c; 
     //Do whatever with buffer 
    for (c=0;c<n;c++) 
    { 
      printf("%c", buffer[c]); 
      decrypted << buffer[c]; 
       
    } 
     
    decrypted.close(); 
     
    delete[] buffer; 
     
    /////////////////////////////////////////////////////////// 
    /////////////////////////////////////////////////////////// 
    //transformation function () will generate c''1 & c''2 
    //take c'1 & c'2 ciphertext generated by Encryption function 
    //need to open ciphertext2 file 
    /////////////////////////////////////////////////////////// 
    ////////////////////////////////////////////////////////// 
     
    Big PREKey_b = rand(q);  
    cout << "PREKey_b: " << PREKey_b << endl; 
     
    ciphertext.open("ciphertexts2", ios::in | ios::binary); 
    if (!ciphertext) 
    { 
      cout << "unable to open file ciphertexts2" << ciphertext << "\n"<<endl; 
    } 
     
    ECn ciph1; 
    ZZn2 ciph2; 
    ECn ciphII1; 
    ZZn2 ciphII2; 
     
    ciphertext >> x >> y; 
    ciph1.set(x,y); 
    ciphertext >> x >> y; 
    ciph2.set(x,y); 
    //close ciphertext2.txt file 
    ciphertext.close(); 
     
    //c''1 = (c'1) ^ PREKey_b 
    ciphII1 = PREKey_b * ciph1; 
    //c''2 = (c'2) ^ PREKey_b 
    ciphII2 = pow(ciph2, PREKey_b);   
     
    // Set the transformation file with (ciphII1, ciphII2) 
    ciphertextenc.open("transformation.txt", ios::out | ios::binary); 
    if (!ciphertextenc) 
    { 
 

 
Figure 5.4 Sample Code 4
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    cout << "unable to open file transformation.txt" << ciphertextenc << "\n"<<endl; 
    } 
     
    mip->IOBASE=16; 
    ciphII1.get(x,y); 
    ciphertextenc << x << endl; 
    ciphertextenc << y << endl; 
    ciphII2.get(x,y); 
    ciphertextenc << x << endl; 
    ciphertextenc << y << endl; 
      
    //close transformation file 
    ciphertextenc.close(); 
     
    ///////////////////////////////////////////////////////////// 
    //////////////////////////////////////////////////////////// 
    //decrypting here just to see we have this right 
    //we need to open ciphertext 
    ///////////////////////////////////////////////////////////// 
    ///////////////////////////////////////////////////////////// 
     
    //ECn del; 
    //ZZn2 temp4; 
    //ZZn2 result2; 
    ZZn2 temp6; 
    del = key2; 
    cout << "key2: " << key2 << endl; 
    //key1 is the product of all intermediate nodes proxy keys 
    //right now we have one so its prekey_b. 
     
    //forget about key3 ...only used for verification. 
     
    Big key1 = PREKey_b; 
     cout << "key1 = PREKey_b: " << key1 << endl; 
    Big key4 = thetaj; 
     cout << "key4: " << key4 << endl; 
    Big k4inverse = inverse(key4, q); 
     cout << "k4inverse: " << k4inverse << endl; 
    Big k1inverse = inverse(key1, q); 
     cout << "k1inverse: " << k1inverse << endl; 
    ECn Alphak1inverse; 
    Alphak1inverse =  k1inverse * ciphII1; 
     cout << "Alphak1inverse : " << Alphak1inverse << endl; 
     
    
    if (ecap(Alphak1inverse, del, q, cube, temp6) == FALSE) { 
      cout << "Pairing computation failed.  Please try again with a different seed." << endl; 
      exit(1); 
    } 
     
    result2 = pow(ciphII2 , k1inverse) / pow(temp6, k4inverse);  
    //result2 = temp7 / temp8; 
    cout << "result2 get bigs: = " << result2 << endl; 
    result2.get(x,y); 
     
    //we need to get this number back 
    //7468697320697320612074657374210A,0 

 

Figure 5.5 Sample Code 5
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    ////////////////////////////////////////////////////// 
    //we need to open transformation.txt file and get c''1 and c''2 
    ////////////////////////////////////////////////////// 
    ciphertext.open("transformation.txt", ios::in | ios::binary); 
     if (!ciphertext) 
    { 
      cout << "unable to open file" << ciphertext << "\n"<<endl; 
      exit(1); 
    } 
      
    ciphertext.seekg(0,ios::end); 
    size = ciphertext.tellg(); 
    ciphertext.seekg(0,ios::beg); 
    buffer = new char[size]; 
    memset(buffer,0,sizeof(buffer)); 
    ciphertext.read(buffer, size); 
    ciphertext.close(); 
    //int n=0; 
    n = ZZn2Tochar(result2, buffer, size); 
    cout << "n = " << n << endl; 
     
    cout << "Decrypting transformation Message\n"; 
     
    decrypted.open("decryptedtrans.txt", ios::out | ios::binary); 
    if(!decrypted) 
    { 
      cout << "Unable to open file" << decrypted << endl; 
      exit(1); 
    } 
     
    //int c; 
     //Do whatever with buffer 
    for (c=0;c<n;c++) 
    { 
      printf("%c", buffer[c]); 
      decrypted << buffer[c]; 
       
    } 
     
    decrypted.close(); 
     
    delete[] buffer; 
     
 
    return 0; 
} 
 

 
Figure 5.6 Sample Code 6
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Creating filelist for 2 

Categorizing files. 

Finding a working MD5 command.... 

Found a working MD5 command. 

Computing results. 

SLOC    Directory       SLOC-by-Language (Sorted) 

92260   2               ansic=46584,cpp=45611,asm=65 

Totals grouped by language (dominant language first): 

ansic:        46584 (50.49%) 

cpp:          45611 (49.44%) 

asm:             65 (0.07%) 

Total Physical Source Lines of Code (SLOC)                = 92,260 

Development Effort Estimate, Person-Years (Person-Months) = 23.14 (277.64) 

(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05)) 

Schedule Estimate, Years (Months)                         = 1.77 (21.21) 
(Basic COCOMO model, Months = 2.5 * (person-months**0.38)) 

Estimated Average Number of Developers (Effort/Schedule)  = 13.09 

Total Estimated Cost to Develop                           = $ 3,125,401 
(average salary = $56,286/year, overhead = 2.40). 

SLOCCount, Copyright (C) 2001-2004 David A. Wheeler 
 

 

Figure 5.8 SLOCCount Evaluation Tool
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CHAPTER 6. SUMMARY AND FUTURE WORK

6.1 Summary

This thesis introduced the Accountable Anonymity concept and implemented it in the A2S

system, a more rational anonymity system than current absolute anonymity systems. This

is a lightweight system prototype that provides accountability features and proves that the

new proxy re-encryption scheme works in a multi-hop environment, a feature that has not

been implemented by the research community, to the best of the research team’s knowledge.

Examples were given of why Accountability is needed in an anonymous system. An overview of

current work on Anonymity systems was given, as well as a brief mathematical background to

understand the methods and protocols used for our new proxy re-encryption scheme. System

implementations details were given and showed through our experiments that the A2S system

is scalable and practical. This research was also the product of two technical papers submitted

to the ACM Conference on Computer and Communications Security (CCS) 2011, and was part

of a collaborative team effort with Gang Xu, another Ph.D. student.

6.2 Future Work

Most of our time was consumed in ensuring the algorithms were encrypting and decrypting

correctly. This was done to make sure that the system is reliable. Therefore, the following,

are minor changes that are needed for future work. Our Registration phase needs additional

work, in the existing version, keys are created and used in order to save some time in the other

phases. The NTRU [16] a new ring based public key cryptosystem can be used instead of RSA

scheme to improve our performances and to avoid conflicting with the MIRACL library. Every

intermediate hop needs to be a client, not just a server. To mitigate SQL injection attacks
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to our Directory Server, we plan to use stored procedures and would not let any regular user

access the database with administration rights.
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